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A time-stepping code has been constructed to study the dominant resistive 
magnetohydrodynamic (MHD) instability of an axisymmetric toroidal plasma. The model 
used is based on the linearized, incompressible MHD equations with constant density and 
includes the toroidal ideal model if the resistivity is taken to bc zero. The equations are solved 
fully implicitly using a coordinate system for which one set of coordinate surfaces coincides 
with a set of surfaces of constant poloidal flux. This is crucial for the accurate representation 
of modes for which the perturbed quantities vary rapidly near surfaces with rational values of 
the safety factor. The code is checked by comparison with an exactly soluble model, cylin- 
drical resistive MHD codes and a toroidal ideal MHD code (ERATO). Results are presented 
showing the effect of resistivity on the unstable internal modes near nq, = 1 for an INTOR- 
like numerically generated equilibrium. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Over the past decade there have been considerable advances made in the 
numerical study of ideal magnetohydrodynamic (MHD) instability for toroidal 
plasmas [l-5]. The most successful of these approaches [l, 23 have used the 
energy principle and coordinate systems based on the MHD equilibrium flux sur- 
faces. In addition, codes have been developed for a circular plasma column 
including the effect of resistivity [&lo]. It is not possible to use the energy prin- 
ciple in the same way for this case (see, however, [ll, 12]), but the modes can be 
determined by looking for the parameter values for which the boundary conditions 
are satisfied, or, for the fastest growing mode, by calculating the long time 
behaviour of the system. Calculations of the resistive case have also been applied to 
straight systems including nonlinear effects [ 13, 143 and coupling between various 
helicities [ 151. These latter codes have used simplified models directed towards the 
study of disruptive instabilities. 

For the development of our knowledge of the behaviour of toroidal plasmas it is 
important to complement these codes by the study of the case of a fully toroidal 
plasma. Progress has been made for this problem using Cartesian or polar coor- 
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dinates [16, 171 and also flux coordinates [18, 191. A program to numerically 
implement the boundary layer matching method [2&23] in toroidal geometry has 
been successful for zero-pressure systems [24]. In this paper we describe a code, 
RESAU, which has been developed to integrate the linear equations of resistive 
MHD for toroidal plasma dynamics using a coordinate system based on the flux 
surfaces of an axisymmetric pressure balance equilibrium. The code is valid for a 
wide range of values of the plasma /I, aspect ratios and shapes without internal 
seperatices for both ideal and resistive plasmas. Care has to be taken for very low 
aspect ratio plasmas (e.g., less than 3) because of the distortion of the flux coor- 
dinate system. This is a problem also with other codes which use a similar Jacobian 
[l, 21. The introduction of even a small amount of resistivity changes the structure 
of the equations from hyperbolic to parabolic with the effect of the dissapative 
terms being felt mainly in what may be termed “internal boundary layers” in the 
vicinity of rational q-surfaces [2&22]. The code is fully implicit; the parabolic 
nature of the equations makes implicit methods desirable from the point of view of 
both computer time and numerical stability. Since the boundary layers occur in the 
region of particular constant flux surfaces and since they become quite narrow for 
large values of the magnetic Reynolds number, the choice of a flux-based coor- 
dinate system becomes quite important to maintain numerical accuracy. In 
addition, boundary conditions at the magnetic axis and at the plasma surface can 
be quite accurately represented using flux coordinates. 

The code we have developed can be used to find the fastest growing unstable 
mode since this mode quickly dominates the solution as time progresses [4, $7, 81. 
The problem is not self-adjoint and so the fastest growing mode could be overstable 
(i.e., have a complex eigenfrequency) in contrast to the ideal case where self- 
adjointness guarantees that the squares of the characteristic frequencies are real. 
The cases we discuss in this paper, however, have real growth rates. 

2. BASIC EQUATIONS 

We use the following linearized MHD equations (S.I. units): 

p; c?v=-V6p+~(VxB)xBB++G3)xB, (2.1) 

with 

V*dB=O. (2.3) 

Here 6B, 6v, and Sp are the perturbations on the equilibrium magnetic field (B), 
velocity and pressure. These equations have been written in the simplest form which 
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includes the effects of a possibly nonuniform resistivity q. We will neglect the effects 
of the other transport coefficients and regard the density p as a constant. 

Since the study of toroidal effects on the stability of resistive plasmas is a com- 
plex one, we make the additional assumption that the plasma is incompressible. 
Studies of ideal MHD instabilities show that compressibility is not a crucial factor 
in determining the fastest growing mode particularly near the marginal point but 
affects primarily the structure of the stable part of the spectrum. If the major effect 
of resistivity is in the neighborhood of surfaces with rational values of the safety fac- 
tor, q, then it is to be expected that much useful information can be obtained from 
the study of an incompressible plasma [6-lo]. Incompressibility implies 

V*dv=O, (2.4) 

so that the Eqs. (2.1 k(2.3) can be closed (i.e., Sp eliminated) by taking the curl of 
the Eq. (2.1) to obtain 

p&(vx6v)=~v~(B.v6B+6B.~). (2.5) 

To set up the equations in dimensionless form we introduce a characteristic 
magnetic field amplitude, B,, which is chosen to be the toroidal magnetic field in 
the vicinity of the magnetic axis, and a characteristic length, rP, which is chosen to 
be half the width of the plasma. With these choices there are two characteristic time 
scales, defined by the resistive diffusion time 

= R = r;khO (2.6) 

(q,, is the resistivity at the magnetic axis) and the toroidal AlfvCn transit time 

z,4 = h4PclPP21&. (2.7) 

The magnetic Reynolds number, S, is the ratio of these, i.e., 

s=~,/~,. (2.8) 

We shall choose the basic time scale for the problem to be rA and put 

v = zA h/r,, 

b = 6B/B,, 

and 

t=r/z,. 

(2.9) 

(2.10) 

(2.11) 
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Using these variables, the basic equations are 

and 

-$Vxv)=Vx(&Vb+b+%), 

;=Vx(vx@-Vx(qTxb), 

V.b=O, 

v*v=o, 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where B = B/I&, is the normalized equilibrium magnetic field and q = 
r) x (p/~o)‘/2/r,&, (note that l/S = q at the magnetic axis). 

The approach used by Dibiase and Killeen [7] was to take an additional curl of 
the Eq. (2.12) and to eliminate the toroidal components of both b and v by using 
Eqs. (2.14) and (2.15). This was the original approach used by us [18], with the 
contravariant components of v and b being used as the basic variables. However, it 
suffers from several drawbacks. First, in toroidal geometry, using flux coordinates, 
third order derivatives with respect to the flux coordinate are introduced; second, it 
was found that for a particular model (the Shafranov constant current model [25]) 
nonunique solutions are obtained even in the cylindrical limit. This causes serious 
problems near the magnetic axis where accurate determination of the poloidal com- 
ponents of b and v are required to suppress any singular behaviour of the toroidal 
components. Finally, high order derivatives of the equilibrium fields are introduced 
by the extra differentiation. 

The following alternative approach was adopted. The conditions, Eqs. (2.14) and 
(2.15), were satisfied exactly by introducing vector potentials for both b and v, i.e., 
we introduce a and u so that 

b=Vxa (2.16) 

and 

v=vxu. (2.17) 

This does not define a and u uniquely; however, we can resolve this by choosing the 
toroidal component of u to be zero and requiring a to be solution of the equation 

$=(Vxu)xB+V(B*u)---fl(VxVxa), (2.18) 

i.e., we absorb the gradient of the arbitrary function, introduced when Eq. (2.13) is 
integrated, into a itself. (Note the * has been dropped at this point.) The additional 
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term involving the gradient of the scalar function B - u simplifies the component 
form of the right-hand side of Eq. (2.18) and in particular, for an ideal eigenmode, 
forces a,+ CC uI. This equation along with 

&Wxu)=Vx(BV(Vxa)+(Vxa)VB) (2.19) 

(which is Eq. (2.12) written in terms of a and u) then constitute the basic equations 
which are satisfied by the poloidal components of u and the three components of a. 
The compressible case could be treated by introducing an additional term in 
Eq. (2.17) in the form of the gradient of a scalar potential and taking the gradient of 
Eq. (2.1) and the continuity equation as the additional two equations needed to 
determine the scalar potential and the perturbed pressure. One significant advan- 
tage of the set of equations we use is that the resistivity can be taken to be non- 
uniform without introducing derivatives of the resistivity. For example, a vacuum 
region outside of the plasma could be simulated by choosing the resistivity to be 
large in that region [16]. 

3. COORDINATE SYSTEM 

The choice of the toroidal coordinate system is important. For most tokamaks 
the magnetic Reynolds number, S, is large. Analytic treatments [20-231 have 
shown that under this condition the predominant effect of resistivity is in a narrow 
region in the vicinity of rational q surfaces. Thus, as we have emphasized, to have 
any hope of treating instabilities for even moderate values of S, a coordinate system 
must be chosen for which the coordinate surfaces coincide with the flux surfaces of 
the equilibrium plasma. This problem was faced by the designers of some codes for 
ideal toroidal MHD stability studies [l-3] and we use a modification of the coor- 
dinate system used in the Princeton PEST code. Starting with a numerical 
equilibrium solver, this enables the mapping section [ 1 ] of that code to be used 
with minor changes to provide starting data for our code. 

In the Princeton scheme the magnetic field is expressed in the form 

B = Nf V4 x W + &3’41, (3.1) 

where Q is the toroidal angle; $ labels the magnetic surfaces and is chosen so that 
II/ = 0 at the magnetic axis and tj = 1 at the plasma surface. The function f($) is 
related to the poloidal flux function Y(tj) by 

i ay f=---. 
27rB, a+ (3.2) 

If X, 4, 2 are the usual cylindrical coordinates, with 2 defining the symmetry axis 
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and the magnetic axis lying in the Z= 0 plane, the toroidal component of the 
magnetic field is related to g(tj) via 

(3.3) 

so that it is convenient to choose R to be the distance of the magnetic axis from the 
axis of symmetry and then g = 1 at the magnetic axis. 

We choose q4 and $ as two of the coordinates of the toroidal coordinate system. 
The third coordinate 8 is chosen to simplify the operation B * V. The Jacobian, J, is 
given by 

J= (V~xV@V8)-’ (3.4) 

and the safety factor, q, by 

where @ is the toroidal flux function and the integral over 0 is taken over a con- 
stant tj and qS line. With these definitions the operator B * V is 

a a 
BV=BVOg+B*V~G 

1 ’ 

where we have used the condition 0 < 0 < 271. 
Note that we have used the toroidal Alfven transit time (z,), i.e., with respect to 

the toroidal magnetic field at the magnetic axis, as the basic time scale. Comparison 
with cylindrical models [25] and other ideal MHD results [l-3] is often more 
conveniently made in terms of the poloidal AlfvCn transit time (i.e., with respect to 
a weighted average of the poloidal magnetic field at the plasma surface) which is 
taken to be rArp/qsR, where qs is the safety factor at the plasma surface. 

The choice 

J= X21aW, (3.7) 

where a(+) is an arbitrary function of $ leads to 

JB-V= B,,f (&+q$), 

i.e., the field lines are straight in this new coordinate system. It is expected that this 
will lead to a greater accuracy in the representation of this operator numerically 
when one works with Fourier transforms with respect to 0 and 4 [ 11. 

The function a($) could be chosen to concentrate the grid points in regions 
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where the solutions vary significantly, e.g., in the region of rational q values. This 
refinement may become necessary for the treatment of larger values of S. Two cases 
are of interest: first, o! = constant will give the coordinate system used in the initial 
PEST code [ 11. This has the disadvantage for our purposes that in the large aspect 
ratio, cylindrical limit where the Jacobian is approximately constant 

* a r2, (3.9) 

where r is the radial distance from the magnetic axis. This makes our formulation of 
the boundary conditions awkward (with factors of $‘I2 appearing [ 1)) and leads to 
a large spacing in the yj grid near the magnetic axis. It has proved more satisfactory 
to use 

1 
u a -) 

IL 

for which, in the above limit, 

* a r, (3.11) 

which gives a more accurate representation in a finite difference formulation near 
the magnetic axis. This coordinate system is close to that used in the ERATO code 
PI. 

The decomposition of the basic vectors u and a has been made in terms of their 
covariant components [26]. Thus we express 

u = ~II/ + +ye + Up4 (3.12) 

and 

a = atiV* + a,VtI + a+Vqi (3.13) 

Since the coordinate system we use is nonorthogonal, the components of Eqs. (2.18) 
and (2.19) are not simple and need to be calculated by exploiting various vector 
identities and the use of such expressions as 

aa, aa, 
J(Vxa)‘=z-q 

(with cyclic permutations of tj, 8, d), 

(3.15) 

4 = C gikak, 
I 

(3.16) 
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where the metric tensor components 

P = IWI’, 
g*e=ge@=v*.ve 7 

gee = Ive12, (3.17) 

and 

g*s = l/P, 

are obtained as output from a mapping code as functions of tj and 0; along withf, 
g, and q as functions of $. The covariant components of the metric tensor 
(gee, etc.) are obtained from the inverse of the contravariant tensor (Eq. (3.17)). 
Future modifications of the code envisage the use of an equilibrium solver which 
uses flux coordinates [26, 271 to obtain this metric information directly and 
quickly. 

4. REDUCTION OF THE BASIC EQUATIONS 

Fourier analysis of the components of the vectors u and a can be used to express 
their dependence on the variables 8 and 4 and to simplify the expressions involved. 
Because of the axisymmetry of the equilibrium, the toroidal modes decouple and, in 
what follows, we treat each toroidal mode independently. Thus we take 

(4.2) 

and 

(4.6) 

Note that we have followed the notation of Ref. [l] in that 1 is the poloidal mode 
number, in contrast to the notation m, which is often in cylindrical geometry. The 
parameter n is the toroidal mode number. 

The factor i is included explicitly in the analysis of u+, aO, and a( because, in the 
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common case, of symmetry about the Z= 0 plane, the real and imaginary terms 
decouple and we can treat the Fourier components, as defined, as being real quan- 
tities. 

Because of the factor J appearing on the left-hand side of Eqs. (3.14) and (3.15) it 
is convenient to multiply the Eqs. (2.18) and (2.19) by this factor before taking their 
Fourier transform. After this Fourier analysis the three contravariant components 
of Eq. (2.19) can be written in the form 

(4.7) 

correspond to the $, 8, and 4 
label the appropriate Fourier 

1 PL 

aa;, 
+ P3,p(E’, 4 $1 alCI” 9 1 

where the subscripts tl and /3 take on values which 
components, respectively, and the indices 1 and 1 
coefficients. Equation (2.18 ) yields 

where J,($) refers to the Ith Fourier coefficient in the expansion of the Jacobian. 
There are a large number of terms involved in the calculation of most of the coef- 

ficients and these are listed in Appendix A. In the course of this calculation it is 
necessary to carry out numerical differentiation of the metric tensor elements, etc., 
with respect to 8 and II/. The 8 derivatives are evaluated using fast Fourier trans- 
form techniques and the I,$ derivatives by using Lagrange interpolation, the order of 
which can be chosen arbitrarily so that one can determine the dependence of the 
final result on the order used in this aspect of the calculation. Typically a value of 4 
has been used. 

Because of the freedom we have in the choice of the velocity stream function u, 
we can choose the toroidal component of u to be zero, which means that we need 
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only determine live sets of Fourier components, viz. u*/, uer, a*.,, aer, abr 
(1= 0, f 1, +2,...). We therefore only need to retain five sets of equations from 
Eqs. (4.7) and (4.8). For convenience we choose only the I+?- and &components 
from Eq. (4.7), the &component equations being redundant in this case. 

5. FINITE DIFFERENCE FORM 

The Eqs. (4.7) and (4.8) can be approximated by introducing N equally spaced 
grid points for the $ range (0, 1) and making, e.g., the substitution 

%I.=( 
u~i,j~l~“~l,j-1~12v*~ 

J 

a%, _ 

w j- (“iblj+l -2u*~,j+u~l,j-1)/(v~)2, (5.2) 

where V$ = l/(N- 1) and tij = (j - 1) V@. Nonequally spaced points could be 
accommodated but with a lower order of accuracy. For the interior points this will 
enable the equations to be cast in the following form 

; mu) = CPU), (5.3) 

where R and P are matrices of block tridiagonal form and u represents the solution 
vector (incorporating both u,,,~ and aalj over the whole range of values of a, I, and 
j. It will be useful to introduce “zone-packing” so that there will be more grid points 
in the vicinity of the rational surfaces, where the eigenfunctions may vary rapidly. 
This modification is being introduced for future versions of the code; however, 
the numerical process remains essentially the same. Using a fully implicit time 
differencing procedure we can write 

Ruk+l-Ruk=(l-~)AfPuk+‘+~AtPuk, (5.4) 

where the implicitness parameter E is usually taken to be 4 and the superscript k 
refers to the value of the solution at the kth time-step. This set of equations can be 
cast into the form 

-AjUJ%;+ll+Bjujk+l-C.~++l=d;, 
J J--1 

j= 2,..., N- 1, (5.5) 

where Aj, Bj, and Cj are square matrices whose order depends on the number of 
Fourier modes retained. If lmin < I < I,,, and L = I,,, - lmin + 1, then these matrices 
are of order 5L x 5L. The vector d; is determined entirely from the solution at the 
kth time step, via (R + g AtP) uk. In the next section it will be shown that the boun- 
dary conditions can also be cast into this form but with Ci =0 and AN=O. 

Those equations need to be solved repeatedly and an efficient scheme has been 
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set up, based on the standard procedure (see Dibiase [7] or Potter [28]). The 
technique has been optimized so that the set of 5L x 5L matrices have to be inver- 
ted only once. These inverses and other required quantities are stored on disk and 
only a series of matrix-vector multiplications (of order 5L) are required at each step 
of the iteration procedure (see Appendix B). This saves both space and time and 
each time step takes a time of order NL*. (On the Flinders University PRIME 750, 
the actual time per step is approximately 0.01NL2 sec.) 

6. BOUNDARY CONDITIONS 

The form of the boundary condition at the magnetic axis will depend on the 
behaviour of J near G(/ = 0. If we choose J- $ (see Eqs. (3.7) and (3.10)) then the 
appropriate boundary conditions are 

(6.2) 

l/l ad,-* . (6.3) 

These relations can be obtained most readily by studying the cylindrical or large- 
aspect ratio case and are equivalent to the boundary conditions used for toroidal 
MHD codes [l, 23. Thus the simple way of expressing the boundary conditions, at 
the magnetic axis for each step, is, e.g., 

uOI,l = aOl,l = 0, 
+I.1 = ati,, = 0 (I# l), 

-Q/,2 + U$/,I = 0 (I= 11, (6.4) 

and 

- a+1,2 + atiLl.1 = 0 (I= 1). 

These equations can then be expressed compactly in the same form as Eq. (5.5) viz. 

-A,U:+l+B,u:+‘=d:, (6.5) 

where d: is taken to be zero, B, is the unit matrix and A, has zero components 
except for the components which correspond to the $-component equations for 
l=O. 

The boundary conditions at the conducting wall are subject to some debate 
[7-lo] and it would be useful to study the effect of different boundary conditions, 
which will depend to some extent on the assumptions made about the plasma con- 
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ditions near the wall. Numerically, it is useful to choose boundary conditions which 
are consistent with the basic equations (2.18) and (2.19), i.e., that do not lead to 
large derivatives in the immediate vicinity of the boundary. In practice, therefore, 
we have chosen the set used by Dibiase and Killeen [7, S] which express the con- 
ditions which hold when there is a vacuum between the plasma and the wall, in the 
limit as the vacuum layer thickness approaches zero. Thus we take the normal com- 
ponents of the perturbed magnetic field, velocity, current and vorticity to be zero, 
i.e., 

?I’=0 9 

b+=O, 

(Vxv)~=O, 

(Vxb)!‘=O. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

In addition these conditions are appropriate for a direct comparison to be made 
with the ideal MHD code ERATO [2] when the wall is taken next to the plasma. 
The contravariant $ components of (V x b) or (V x V x a) and (V x v) or (V x V x u) 
involve only the first derivatives of the components of a and u (see Appendix A) 
and so these conditions lead to well-defined mixed boundary conditions. 

A fifth condition is required to close the equations. When q is equal to zero we 
note that the &component of Eq. (2.18) involves only U) on the right-hand side (see 
Eqs. (4.8) and (A.2)). Since we choose the gauge with U) = 0, it is therefore con- 
sistent to fix 

a,=0 (6.10) 

on the wall when we look for a normal mode. When q is not equal to zero it is not 
self-consistent to take a+ =O. However, we note that the contravariant $ com- 
ponent of the complete right-hand side of Eq. (2.18) involves only the first 
derivatives, with respect to $, of the components of a and u. Hence this equation 
can be set up in finite difference form at the wall with the left-handed first 
derivatives to close the equations. 

Applying these conditions at the wall we are led to four sets of conditions which 
can be expressed in the form (for each value of ,‘) 

a = VA 8, (6.11) 

a = *, 6 9; (6.12) 

where /I= (I,/?, 0, 4) and the coefficients XlaS, XlaS, YlaS, and Y,,, are given in 
Appendix A. The fifth conditions follows from the appropriate combinations of the 
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equations (4.8). Expressing the $-derivative as a left-handed finite difference form, 
these equations can be cast in the form 

B,uk,+ ’ - C,,,U~N+-~, = d$+,, (6.13) 

where d”, is taken to be zero at each time-step. This equation, along with Eqs. (6.5) 
and (5.5), completes the setting up of the implicit iteration scheme in a block 
tridiagonal form. 

7. ITERATION PROCEDLJRE 

There is a great deal of freedom in the choice of the initial function u’. If we are 
using the iteration to project out the fastest growing mode, u” needs only to be not 
orthogonal to this mode. If the resistivity is chosen to have a very large value out- 
side a certain flux surface, this outside region will correspond to a fixed vacuum 
region surrounding the plasma. In such a case it would be appropriate to choose 
the initial u” such that there were no currents in this region by, for example, choos- 
ing the initial vector potential to be zero in this region. If no information is known 
about the structure of the sought-for mode, a simple quadratic form multiplied by 
I)’ or $‘+I (see Eqs. (6.1), (6.2)) is chosen for the components of u and a. Alter- 
natively, if a series of parameter changes are being made, it saves considerable time 
if u” for the new parameter value is chosen to be the iterated solution for the 
previous run. 

After a sufficient number of iterations, k,, for a purely unstable case, the fastest 
growing mode will dominate and 

u k+l= Auk, (7.1) 

where 1 is independent of k for k > k,. Provided that dt is sufficiently small, il has 
the form 

A= exp(y dt), (7.2) 

and we could therefore find the growth rate d from 

y z log I/At w log (7.3) 

where llull represents some reasonable norm of the vector U, e.g., the square root of 
the sum of the squares of the components. In practice we can calculate y for each 
component of u separately and require that these agree to some predetermined 
accuracy. When resistivity is included, the symmetry properties, which guarantee 
that y2 is real for the ideal case, do not exist. Thus, circumstances can arise for 
which the characteristic modes have both an exponentially growing and an 
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oscillatory character. Effectively this implies that the characteristic time dependency 
is described by a complex y. Such cases require a special treatment. 

A procedure which is accurate for larger values of dt, and hence may require a 
smaller number of iterations, can be obtained by utilizing the structure of the basic 
iteration equation, Eq. (5.4), for the case E = 1. In fact the iteration scheme Eq. (5.4) 
can be regarded as equivalent to a scheme which projects out the eigenvector 
corresponding to the largest eigenvalue of the matrix (R + $P At)/(R - $P At). If y is 
the eigenvalue corresponding to Pu = yRu, then 

1=(1+&ldt)/(l-&It), (7.4) 

This is true for almost any dt (#2/y), however, it is clearly advantageous to choose 
At close to 2/y. This is equivalent to the inverse iteration procedure [28] and can 
considerably reduce the number of iterations. One does have to take care, however, 
that the At is not chosen in a way which projects out the higher (less unstable) 
eigenmodes. At the present time this can only be done by trial and error as the non- 
hermiticity of the matrices does not permit (as is done for the ideal MHD codes 
[l, 23) a direct check on the number of modes with a growth rate larger than a 
nominated amount. The procedure therefore is to iterate Eq. (5.4) until one mode 
dominates and to estimate the growth rate y from 

(7.5) 

If the system is overstable, i.e., the growth rate is complex, we follow a procedure 
of Wilkinson [29] in which the mutual inner products of three successive iterates 
are used to set up the coefficients of a quadratic equation whose roots give an 
estimate of y. In practice this procedure is used normally since there is no a priori 
reason to believe that the growth rate will be real, although this is usually the case. 
Ryu and Grimm [6] (see also [24]) give some counterexamples for a cylindrical 
model. 

8. RESULTS 

We present results from a variety of situations, to show the validity of RESAU 
and to explore toroidal effects on resistive instabilities. It is expected to publish later 
more complete parameter studies. First, a comparison with the analytic results from 
an exactly soluble resistive MHD model [30] is presented. In this model the 
plasma equilibrium is cylindrical and has a constant axial current and a constant 
axial magnetic field. With constant resistivity this is an extension of the model of 
Shafranov [24] and the growth rates y (in units of the poloidal Alfvtn time) of the 
characteristic modes are given by 

Y(Y-(i2+KZ)/s)= ; 2 

(I[ 
2(1- nq)lc 

-u-F?)2+ +,/w 1 , (8.1) 
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where c is a parameter which, to satisfy conducting wall boundary conditions, must 
be a solution to the transcendental equation 

4JXi) f (i’ + K’) IJ,(i) = 0, (8.2) 

where, in both equations, the sign is chosen consistently. Here K = m-,/R can be 
regarded as the dimensionless wave number in the axial direction. The cylindrical 
limit is simulated in this case by taking the following metric tensor components 
( rP = plasma radius) 

g4* = l/r;, 

gLg%o 7 

gee = 1/r; $2, 

g”4 = l/R2 

(8.3) 

with the Jacobian 

J= r;Rrl/ (O<ti<l) 

and, for this model, g and q are constant and f(e) = grzIc//q. 

(8.4) 

The ideal MHD result corresponds to the case q + 0. If [ is small, the plasma is 
unstable (y real and positive) for the same ranges of values of the parameters 
(K, Z, q) that apply for the ideal case. Otherwise the plasma perturbations are either 
purely damped (y real and negative) or damped and oscillating (y complex with a 
negative real part). Unfortunately, this model, which has no shear (i.e., q is con- 
stant), does not display any of the complexity which is seen in other models 
(Refs. [7,21]). In fact the limit r~ --NO is a uniform one, so that the model does not 
exhibit tearing mode behaviour, which is characterized by almost singular eigen- 

FIG. 1. Showing a comparison between the analytic result and the numerical result extrapolated to 
A$ =O. The approximately linear part of the curve corresponds to values of N> 50. 
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functions near rational q-surfaces. However, it does serve to point out that tearing 
mode behaviour does not necessarily occur when q has a rational value. We shall 
present cases with shear, in toroidal geometry, which exhibit simple resistively 
modified ideal MHD instabilities even in the vicinity of values of q which are equal 
to the ratio of small integers. The finite difference procedures used in Section 5 for 
variations in the $-direction are second-order accurate so that the numerical result 
should differ from the analytic result by an amount of order (LI$)~. This result is 
illustrated in Fig. 1, showing that a realistic comparison with the analytic result 
should only be made after extrapolation. The parameters used for this comparison 
were q=1.4, n=l, l=l, q=O.Ol and ~=1.4. 

This model is also used to explore the scaling with respect to At. In particular it 
is of interest to compare the result for the growth rate y obtained by using the 
approximation of Eq. (7.3), which relies on the smallness of At and in practice is 
only accurate for y At 6 1, and the estimate given by Eq. (7.5), which will give an 
accurate estimate of the eigenvalue of Pu = yRu for almost any values of At. The 
choice of an appropriate value of At therefore will depend on the magnitude of the 
growth rate of the mode of interest. This is obviously easier if one has an estimate 
of the growth rate for the mode, so it is often worthwhile to carry out a series of 
runs with a small number of grid points and poloidal modes. This is more difficult 
near the marginal points; however, often a series of growth rates are required for 
varying parameter values and extrapolation from known growth rates can give suf- 
ficiently accurate estimates of the growth rate to enable good choices to be made 
for At. 

In Table I the growth rate obtained using Eq. (7.3) is given, among with the 
growth rate obtained using Eq. (7.5), for the constant current model case con- 

Al 

TABLE I 

Study of Effect of Change of At on Growth Rate y 

1 log l/At Y n, 

2.5 
5.0 

10.0 
15.0 
20.0 
25.0 
50.0 

100.0 

1.586 0.1844 0.1812 39 
2.657 0.1955 0.1812 20 

20.29 0.3010 0.1812 8 
- 6.569 0.1812 16 

3.770 0.06635 0.05808 80 
6.300 0.07362 0.05808 13 

- 5.425 0.05808 15 
6.971 0.01942 0.01498 12 

Note. A study, for the constant current model with q = 1.1, n = 1, I= 1, n = 0.01, K = 1.4, and N = 71, 
of the effect of the change of At on the growth rate, y, calculated using Eq. (7.5), compared with log l/Al 
(which is valid only for small values of At and many time-steps n,). Note that as Ar is increased, the less 
unstable modes are projected out. The exact values, from Eq. (8.1), for the growth rates of the 3 most 
unstable modes are 0.1808, 0.05706, and 0.01920, respectively; for direct comparison with these values 
one would have to extrapolate in N (see Fig. 1). 
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sidered above with N = 71. The figures under n, represent the number of iterations 
required to achieve a predetermined accuracy in the eigenfunction (less then 0.01% 
average change in an iteration in this case). Note that an accurate growth rate can 
be found using Eq. (7.3) only for quite small values of At, and hence for a 
correspondingly large number of iterations. It will be noted that a wide range of 
values of At can be chosen if Eq. (7.5) is used to estimate the growth rate, but 
clearly the choice of At z 2/y will minimize the number of iterations required. 
However, one does have to take care because a wrong choice of At may project out 
a mode other than the one of interest. For example if y1 and y2 are the growth rates 
of two distinct modes then if 

I(1 +hAt)l(l-hAt)l > I(1 ++yl At)/(l-+y, At)\ (8.5) 

then the second mode will be obtained in preference to the first. This is illustrated in 
Table I for At > 20.0. 

The toroidal extension of this constant current model is the Solov’ev model [31], 
for which the equilibrium current is strictly inversely proportional to the distance X 
from the central axis. Detailed studies have been made for this model for the ideal 
MHD case [32,33, 341 and thus a comparison with these results should give a 
check of those parts of the code which correspond to the ideal equations (i.e., all 
except the second term on the right-hand side of (4.8)). Unfortunately this is not 
completely straightforward because these published results included the effect of 
compressibility and, in its present form, our code treats only an incompressible 
plasma. However, if a sufficiently large value of the specific heat ratio is chosen then 
the ERATO code can be used to give reliable results for incompressible toroidal 
plasmas. In practice it was found that an increase in the specific heat ratio above 
10,000 leads to minimal changes in the calculated growth rate. The results of this 
code have been compared with those obtained from ERATO, with this 
modification, for the Solov’ev equilibria with aspect ratio 3 and toroidal mode 
number n = 2. For this equilibrium, the ratio qs/qo = 1.74, where qs and q. are the 
safety factor values on the surface and at the magnetic axis [32, 33, 341. 

The two codes are quite different in structure and so for each case the results 
have to be extrapolated to give comparable results. In the case of ERATO [2] the 
extrapolation is to the limits N, and N, + co and in the case of RESAU we need to 
extrapolate in N (the number of surfaces in the II/ direction) in the manner indicated 
in Fig. 1 and choose a sufficiently large value of L (the number of poloidal modes). 
Due to limitations of computer space and time the number of poloidal Fourier 
modes needs to be restricted. It proved useful to centre the poloidal modes which 
were included around the dominant mode number. This can often be estimated 
before the calculation, because usually nqo < ldominant < nq, for a case where q is a 
monotonically increasing function. This relatively low-aspect-ratio case studied has 
significant toroidal effects and hence considerable poloidal mode coupling. Table II 
illustrates the effect of increasing the number of poloidal modes, L, with various 
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TABLE II 

Growth Rate for Low Aspect Ratio Solov’ev Case 

-1 -2 -3 -4 

2 0.07586 0.07601 0.07613 0.07618 
3 0.08059 0.08075 0.08087 0.08093 
4 0.08298 0.08315 0.08328 0.08334 
5 0.08403 0.08420 0.08434 0.08440 
6 0.08447 0.08464 0.08478 0.08484 

Note. The growth rate, as a function of the poloidal modes chosen, for a low aspect ratio Solov’ev 
case (aspect ratio 3, n = 2, N = 51, q. = 0.5). 

values of lmin for the case where q,, = 0.50. Convergence is not uniform with increas- 
ing Lx; however, it can be seen that the result for 10 poloidal modes centred on 
1= 1 would be unlikely to change by more than 0.5% by including more poloidal 
modes. The case chosen here is particularly sensitive as it is near a marginal point. 

Table III compares the results for the code RESAU with the results from 
ERATO for a fixed boundary for various Solov’ev equilibria. These runs are 
facilitated by using the scaling factor which enables one to transform one 
equilibrium into another (giving various values for q,,) without repeating the map- 
ping procedure [35,2]. In the case of ERATO the result is obtained by an 
extrapolation using (NIL, N,) = (40,20) and (60, 30) and assuming quadratic con- 
vergence [2]. The results for RESAU are shown for various values of (Imin, I,,,). 
This comparison gives some confidence that the parts of the code which are 
included in the ideal MHD equations, including all the toroidal coupling terms, are 
correct. It is worthwhile noting here that the resistive terms which arise from the 
term q(VxVx a) on the right-hand side of Eq. (2.18) are essentially a repetition of 

TABLE III 

Growth Rate Squared y2 for Solov’ev Model 

L=7 L=8 L=9 
I& = -2 -2 -3 

40 I,,=4 5 5 ERATO 

0.5 0.0579 0.0595 0.0597 0.0608 
0.45 0.1025 0.1042 0.1055 0.1055 
0.40 0.1647 0.1670 0.1675 0.1680 
0.35 0.2289 0.2328 0.2328 0.2347 

Note. With aspect ratio 3 and toroidal mode number 2, obtained from RESAU with various num- 
bers of poloidal modes (L); compared with the results from ERATO. Both sets of results are obtained by 
extrapolation assuming quadratic convergence. 

581/66/2-Z 
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FIG. 2. Poloidal projection of the velocity vectors of the most unstable mode for a Solov’ev 
model-ideal case (r~ = 0.0, q. = 0.45, n = 2, aspect ratio 3). The distortion of the smooth boundary shape 
is an artifact of the plotting routine. 

the coding which is used to construct the left-hand side of Eq. (2.19), viz. 
(V x V x u), which is part of the ideal MHD equation set. To give some idea of the 
timing it may be noted that for the parameters N= 71, L = 7, it takes 14 min on the 
Flinders University PRIME 750 to set up the matrix coefficients, 7 min to construct 
the inverse matrix transformation and 30 see/time-step of the iteration (with 
perhaps 10 iterations for a well chosen value of At). These times scale as NL*. 

FIG. 3. Poloidal projection of the velocity vectors of the most unstable mode for a Solov’ev 
model-resistive case (q = 0.01, qa = 0.45, n = 2, aspect ratio 3). 
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For the Solov’ev model the growth rates of the unstable resistive modes approach 
uniformly the ideal growth rates as r~ is reduced, as was found for the circular con- 
stant current case. This applies even when there are singular surfaces (I = n - q) in 
the plasma. For example, for the above case with q,=O.45 and IZ = 2, nq ranges 
from 0.9 to 1.56. For moderately large values of the restivity (q = 0.01) the unstable 
modes differ from the ideal modes, but only slightly. Examples are shown of the 
poloidal projection of the velocity vectors for a Solov’ev model; Fig. 2 for the ideal 
case and Fig. 3 for the resistive case (q = 0.01). The onset of the greater differences 
between the resistive result and the ideal result seems to be associated with the 
presence of a low-order singular surface in the vicinity of the magnetic axis. In this 
case, this occurs when q. = 0.5 (i.e., nq, = l), where the mode structure is 
dominated by an I= 1 internal mode. 

The modes so far discussed correspond to simple resistively modified ideal modes. 
To study resistive tearing modes we turn to the Bessel function model. This model 
corresponds to a zero beta, reverse field pinch (RFP) equilibrium. This model has 
been studied in some detail by Dibiase and Killeen [7, 81. For this model, in our 
notation, g(e) = JO(r,+) and f($) = r,RJ,(r,$) where J,, and Ji are Bessel 
functions. Figure 4 shows the poloidal projection of the velocity vectors of the 
unstable mode for a typical I= 1 tearing mode with v] = 0.0005. This case 
corresponds to the somewhat artificial situation with rp = 5.5, where there is a 
reversal in the poloidal field. However, at the singular surface, where Z- nq = 0, 

FIG. 4. Poloidal projection of the velocity vectors of the most unstable mode for a Bessel function 
model-resistive case (9 = 5 x 10-4, I = 1, rp = 5.5, n/R = -0.2). Note the “tearing” across the singular 
surface. 
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FIG. 5. Growth rate as a function of 1. For comparison the asymptotic form $I5 is also shown. 

“tearing” occurs with an abrupt change in the direction of the velocity vectors. The 
critical layer width decreases as q is decreased and it is obviously better to have as 
large number of grid points as possible, particularly in the neighbourhood of the 
singular surface. It has been found possible to obtain reasonable results for 
rl= 10e4 after extrapolation from N= 100. It is quite possible to use more points 
than this in a cylindrical calculation, however, in a fully toroidal case storage and 
computing time availability has imposed a limitation an N of this order. Boundary 

FIG. 6. Poloidal projection of the velocity vectors of the most unstable mode for a Bessel function 
model-resistive case (q = 5 x 10m3, I= 2, I = 7.0, n/R = -0.4). Note the “double tearing” across the two 
singular surfaces. 
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layer calculations [20] show that the growth time should scale as r~‘/’ for small q. 
We have found, as have also Dibiase and Killeen [7] and Ryu and Grimm [6] that 
values of q less than lop4 are required before this asymptotic sealing law is reached. 
Figure 5 shows a plot of the growth rate as a function of rl for this case. One result 
of interest is the occurrence of “double tearing” modes which can occur in 
situations where the profile of q produces two singular surfaces. Figure 6 shows the 
poloidal projection of the velocity vectors at 4 = 0 for a double tearing mode 
corresponding to the case I= 2, rP = 7.0, nR = -0.4, 7 = 5 x 10m3 for the Bessel 
function model. 

To illustrate the application of this code to the study of the effect of resistivity on 
the growth rate of a numerically calculated toroidal equilibrium [36], we present 
results for an equilibrium which is similar to that used in model studies for 
INTOR [37]. The equilibrium is obtained by numerical solution (using SOR 
iteration) of the Grad-Shafranov equation for a plasma with boundary shape given 
by the parametric equations 

X= R + a cos(8 + t sin e), 

Z=EasintI 

1.2 
“90 

(8.5) 

FIG. 7. The growth rate squared for the dominant unstable mode for a series of INTOR-like 
equilibria. The dashed curve corresponds to the resistive case (q = 10-4) and the full curve to the ideal 
case. 
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with a pressure (p) and toroidal flux function (g) being defined by 

P( Y) = PO ‘y2 + PI ‘y37 

g”( Y) = to Y2 + t 1 Y3 
(8.6) 

with Y=O on the boundary. For the case studied the major radius R= 5.2m, the 
inverse aspect ratio a/R = 0.27, the elongation E= 1.6 and the triangularity t = 0.3 
and the current was chosen so that p c 2%. Of particular interest is the behaviour 
near the marginal point, since resistivity may extend the region of instability. Fig. 7 

FIG. 8. Poloidal projection of the resistively unstable mode for (a) nq, = 1.092 (below ideal marginal 
point), (b) nq, = 1.22, (c) Poloidal projection of the resistively unstable mode nq, = 1.150 (above ideal 
marginal point) for an INTOR-like equilibrium. 
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shows the growth rate squared (y*), as a function of nq, (where q,, is the safety fac- 
tor at the magnetic axis), for a series we INTOR-like equilibria scaled with the 
Bateman scaling factor [35]. These results were obtained using N= 71, lmin = -1, 
I,,, = 5, n = 4 for both the ideal case (q = 0.0) and the resistive case (with rl= 10p4). 
There is no significant difference in including resistivity for the case where the 
plasma is ideally unstable; however, in this case the plasma is resistively unstable 
for the region nq, > 1.15, where for practical purposes the plasma is not ideally 
unstable (y* < 10e4). A discussion of the problems of determining the ideal 
marginal point is given in Ref. [37] and this code faces similar problems for 
extremely small growth rates. A study of the unstable resistive modes as a function 
of nq, near the ideal marginal point is instructive. Figs. 8a, b, and c show the 
unstable modes for nq, = 1.092, 1.122, and 1.140. For nq, c 1.092 the mode is essen- 
tially an I = 1 internal kink (for both the resistive and the ideal case), however, as 
this mode is ideally stabilized by increasing nq,, the surface nq, = 2 assumes impor- 
tance and the resistivity induces an unstable layer at this surface, dominated by the 
I = 2 poloidal component. 

9. CONCLUSION 

This paper has presented only a limited selection of the parameter studies which 
are possible and it is anticipated that more systematic studies will be forthcoming. 
Extensions and modifications of RESAU are planned which will treat compressible 
plasmas and which will search on the complex frequency plane for the complete 
eigenfrequencies. Such studies have been carried out for cylindrical plasmas by Ryu 
and Grimm [6] and for toroidal plasmas using a boundary layer approach by 
Grimm et al. and Manickam et al. [24]. 

RESAU has the following important features. The vector potential approach, 
coupled with the use of flux surfaces the basis for the coordinate system, enables the 
equation to be set up with, at most, second derivatives and with the possibility of 
treating large values of the magnetic Reynolds number by increasing the number of 
coordinate surfaces in the vicinity of a singular surface. Also, derivatives of the 
resistivity do not appear in the equations. This opens up the possibility of treating a 
vacuum region outside the plasma as a region of very high resistivity. 

APPENDIX A 

The coefficients of the Fourier components of II and a and their derivatives, 
which appear in Eqs. (4.7), (4.8), (6.11), and (6.12), can be expressed in terms of the 
Fourier components of various combinations of the metric tensor elements and the 
Jacobian, along with the functions f($), g($), q($) and their derivatives. For 
notational simplicity we have not included below the arguments (,‘, I, $) 
appropriate for each coefficient and it should be understood that one should choose 
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the Fourier component (with respect to ~9) of order 1’ - 1 of the whole right-hand 
side of each equation. Some simplification has been achieved by using integration 
by parts to eliminate O-derivatives where possible and by replacing all &derivatives 
of u or a by the combination (-in), since their &dependence is always of the form 
exp( - in4) (see Eqs. (4.1 k(4.6)). 

Thus the nonzero terms are (for the left-hand side of Eq. (4.7)): 

R g44 
2)$ = -17, R20b = ni !!!@ 

J’ 

-nri5!!!! 
J’ 

R gee 
2hb = n J, R,,=ny, R2#)= 

Rx6@= -y. 

For the right-hand side of Eq. (4.8): 

WtiJ, = -F= -f(Z- nq), w =af-LaJ 
$0 a* Ja+’ 

a fq aJ 
w,,=$fq)-J&-~ 

W =F+if!!=f(/-nq)+ifg 88 Jae Jae’ 
W+#= F= f(l-nq); 

(A.11 

64.2) 
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(A.31 

g,, 
Q24$ = -ngee 7’ 

g,o 
Qve = n&tie 7’ 

gee a&d --- 
J ae' 

Q,,, = -gee @. 
J 

For the right-hand side of Eq. (4.7): 

P 1eti = I’lFy- 2 gee l’lZ,d + n F 32 - n’Z,e - nlZe*, 

P lee = -nl’Z,, - n2F% - n2Zgll/, 
J2 

P lti, = -l’lZ,, - nlF J2 lge,L - nlZe+, 
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P 2tie= -l’Fy+I’Z4++nZo4, P,,,=nF$&nZ,,, 

P . &T$S 
1e+ = -n2Fr 7 - n2Zq, - nlZ#, - 

P,,, = -n2Fy - n2Ztie + n $ (Z,,), 

Plse = -nlF y - nL+, + 14 (Z,,), 

P 2sj, = -1Fy + IZ,, , 
a 

P2,, = n& f 3 

&0 Pze4 = -nF J2 - nZe, f lZ,, , 

(A.41 

P,,,=FF-Z,,, 

- n $ (Z,,) - 16 (Z,,) - nl’F y - nl’Z,, - l’lZ,, 

+nz(Z,,)-nl’F%-nl’Z,,, 
w 

tz,, 
F 
Tg$*+z** 

P 2w = nFg$ - nZBe - IZ,, , Pzbo= -nF~-nZ,i+~(Z,,)+l’Z,,, 
a$ 

P2@+= -lFy,$ FF -fZ,,-$(Z,,)-I’FY-l’Z,,, 
( 1 

p$$e = zo,3 
go0 

Pw, = Fy--?w 

In the above expressions we have used the notation F= f(l- nq) and it also 
proved convenient to use Z,, to represent those coefficients of the contravariant 
components of Jb which do not explicitly involve F, in the expression for the 
covariant components of (B * Vb + b -VP). Explicitly 

.f ag,, g!w aJ -ljT+fyia 
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J, fjag,, fg,,jJ J 
J ~30 J2 ae Ii . 

The final terms required are those involved in the boundary condition at the wail 
(Eqs. (6.11) and (6.12). Each of the following terms needs to be evaluated at $ = 1, 

gee X204 = - Y20, = -n J, 

Y2,4 = 1. 

Any term not included in each of the above lists (Eqs. (A.1 )-(A.6)) is zero. 
The Fourier transforms of the above terms were evaluated using fast Fourier 

transform techniques, with the number of 8 grid points being typically 32, and the 
results combined to give the set of matrices A, B, and C which make up the total 
block tridiagonal system. 

APPENDIX B 

The block tridiagonal system we need to solve repeatedly has the form (see 
Eqs. (5.5), (6.5), and (6.13)), 

- Ajuj, , + Bjuj - Cjuj_ 1 = dj, (B.1) 

where j = l,..., N and C, = 0 and A, = 0. The A’S, B’s, and C’s are matrices of order 
h4 x M with M = 5L. The solution can be written as 

uj = Ejuj, , +fi, j = l,..., N - 1 (B-2) 
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and 

uN- Nt -f 

where the matrices E, and the vectors fj are defined iteratively Via 

Ej= GjA,, j = 2,..., N, 

fi=Gjdj+GiCjfr-I, j=2 ,..., N, 

where 

Gj= (Bj-CjEj-,)-I, j = 2,..., N. 

As starting values for this iteration 

E,=B;‘A, 

(B-3 1 

(B.4) 

03.5) 

u3.6) 

and 

are used. 

f, = B,‘d, U3.7) 

Having calculated Aj, Bj, and C, (j= l,..., N), the matrices E,, G,, and GjCj 
(j= l,..., N) (with G, = B;’ and G, C, = 0) need only be calculated and stored on 
disk once, the storage requirement being 3 x N x Mx M. For each time-step we 
need to use the forward iteration scheme (B.7) and (B.4) to calculate thefs and the 
backward iteration scheme (B.2) to calculate the U’S. Core storage for only 2 of the 
Mx M matrices is required at each step of the iteration. 
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